Year 11 Autumn T1 - Topic: Bearings and Scale Drawings #### **Prior learning:** Understand congruence and identifying congruent shapes Draw and measure lines and angles Construct circles Understand equidistance | Objectives | | | | | | | |--|------|---|----------------------------------|--|--|--| | End Points | | Foundation | Crossover | | | | | Find bearings from diagrams and worded questions Use and interpret scale factors, scale drawings and maps | nin | o Find the bearing between two points o Draw a point on a fixed bearing from another point Civen a bearing find the reverse bearing | Bearings with Pythagoras Higher | | | | | (H) Bearings with Pythagoras and
Trigonometry | Lear | Use and interpret map scales Draw and interpret scaled diagrams in real-life contexts | Bearings with Trigonometry | | | | ### Where will we use these ideas again: Bearings will be revisited again with trigonometry and angles in parallel lines and scale drawings as a concept is revisited within enlargement. Higher: Bearings with sine rule and cosine rule ## Year 11 Autumn T1 - Topic: Handling Data 2 #### **Prior learning:** Average and range from a list Averages and range from a frequency table Frequency polygons | Objectives | | | | | | | | |--|----------------|--|-------|---|--|--|--| | End Points | | Foundation | | Crossover | | | | | Recap: frequency polygons Construct cumulative frequency diagrams Construct and interpret box plots Compare box plots Construct and interpret histograms | Learning Steps | Recap – Prior knowledge of averages
and range and frequency polygons | 0 0 0 | Construct and interpret cumulative frequency diagram (excluding IQR and median) Use a cumulative frequency diagram to estimate the median and interquartile range Construct and interpret a box plot Compare two or more distributions (median, range, IQR) and make a contextual statement Calculate estimates of statistical measures from graphical representations of grouped data Higher Construct histogram with unequal class intervals Interpret histogram with unequal class intervals Problem solving with histograms | | | | | Where will we use | e these ideas | again: | |-------------------|---------------|--------| |-------------------|---------------|--------| ### Year 11 Autumn T1 - Topic: Non-Linear Graphs - HIGHER #### **Prior learning:** Draw and interpret linear graphs Draw quadratic graphs Identify turning points and roots of quadratic graphs Sketch quadratics Substitution and solving Completing the square | Objectives | | | | | | | | |---|----------------|---|---|--|--|--|--| | End Points | | Foundation | Crossover | | | | | | Interpret real life graphs Draw and interpret cubic graphs Draw and interpret reciprocal graphs Draw and interpret exponential graphs (H) Recap: completing the square (H) Use completing the square to sketch quadratic graphs (H) Equation of a circle (H) Tangent of a circle | Learning Steps | Recognise and sketch simple cubic functions | Recognise and sketch the exponential graph Plot and draw an exponential graph Solve problems involving the exponential function Recap - Complete the square by rewriting quadratics Recap - Use completing the square to solve equations Use completing the square to find maximum and minimum values Higher Sketch a more complex quadratic graph, finding the turning points by completing the square Know and use the equation of a circle Find the equation of a tangent to a circle Find the equation of a tangent to a circle | | | | | | Where will | l we | use | these | ideas | again: | |------------|------|-----|-------|-------|--------| |------------|------|-----|-------|-------|--------| ## Year 11 Autumn T1 - Topic: Non-Linear Graphs #### **Prior learning:** Re-arrange formula Represent inequalities on a number line Solve linear inequalities Drawing linear and quadratic graphs | Objectives | | | | | | | | |--|----------------|--|---|--|--|--|--| | End Points | | Foundation | Crossover | | | | | | (H) Solve inequalities graphically (H) Solve quadratic inequalities graphically | Learning Steps | Recap – solving and representing linear inequalities | Higher Solve a set of linear inequalities in two or more variables and represent solution as a region of a graph Solve quadratic inequalities graphically Solve quadratic inequalities Identify the set of values that satisfy two or more quadratic inequalities or a quadratic inequality and linear inequality | | | | | # Year 11 Autumn T2 - Topic: Combined Events and Probability Trees #### **Prior learning:** Express a probability as fraction, decimal or percentage Mutually exclusive events 'OR' rule in probability Systematic listing Relative and theoretical probability Estimate outcomes | Objectives | | | | | | | |---|----------------|--|--------------------|---|--|--| | End Points | | Foundation | | Crossover | | | | Interpret and draw Venn diagrams Use set notation Probability and Venn diagrams Draw and interpret tree diagrams with replacement Draw and interpret tree diagrams without replacement Successive probabilities Algebra and probabilities | Learning Steps | Recognise and define the universal set Sort data into a Venn diagram Find the intersection from a Venn diagram Find the union from a Venn diagram Complete and use Venn diagrams to find frequencies Recognise and use the notation for intersection, union and complement Design a Venn diagram to solve multi-step problems Use a Venn diagram to calculate probability Understand of Venn Diagrams to three regions Complete a probability tree diagram involving independent events Find probabilities of successive independent events from a tree diagram Understanding how probabilities change in experiments without replacement Complete a probability tree diagram involving dependent events (e.g. without replacement) Find the probability of an event occurring given information as ratios Understand the concept of conditional probability | tr o F d d o F m m | Find probabilities of dependent events from a cree diagram Find conditional probability from a table, Venn diagram or tree diagram Find probabilities of successive independent events without a tree diagram Find the probability of a combination of mutually exclusive events from a tree diagram Find probabilities of successive dependent events without a tree diagram Extend understanding of Venn Diagrams to hree regions Forming equations with dependent and independent events | | | ## Year 11 Spring T1 - Topic: Trigonometry 2 #### **Prior learning:** Know exact values of trigonometric values Find missing lengths using trigonometry Find missing angles using trigonometry 3D Trigonometry Pythagoras and Trigonometry | Objectives | | | | | | | |---|----------------|--|---|--|--|--| | End Points | | Foundation | Crossover | | | | | Understand and apply the sine rule Understand and apply the cosine rule Area of non-right angle triangle 3D trigonometry | Learning Steps | Recap – trigonometry to find lengths and angles Recap – exact values of trigonometry Use trigonometry to calculate angles of elevation | Higher Use the sine rule to find missing sides and angles in non-right angled triangles Use the cosine rule to find missing sides and angles in non right angled triangles Find the area of triangles using ½absinC Solve 3D problems involving trigonometry Trigonometry and Bearings | | | | ## **Year 11 Spring T1 - Topic: Fractions and Algebraic Proof** ### **Prior learning:** Algebraic Expressions Changing the subject Substitution Plotting Graphs | Objectives | | | | | | | |--|----------------|---|--|---|--|--| | End Points | | Foundation | | Crossover | | | | Prove and counter example statements Algebraic proof Substitute into basic and composite functions Find inverse functions | Learning Steps | Use mathematical reasoning (e.g. counter-
example) to prove or disprove arithmetic
statements | | Higher Complete algebraic proofs F(x) notation Evaluate functions by substituting values of x Find the inverse of a basic function where x appears only once Find the inverse of a basic function where x appears more than once Define a composite function Evaluate a composite function by substituting values of x Solve equations involving functions and composite functions Evaluating functions with indices | | | ## Year 11 Spring T1 & 2- Topic: Vectors #### **Prior learning:** Simplify expressions Expand expressions Factorise expressions | Objectives | | | | | | | |---|----------|------------|---|--|--|--| | End Points | | Foundation | Crossover | | | | | Represent vectors in 2D Calculate with vectors in 2D Vector problems including ratios | Steps | | Represent a two-dimensional vector as a column vector Multiply and divide vectors by scalars Add and subtract vectors and/or multiples of vectors | | | | | | Learning | | Higher Understand that parallel vectors are multiples of each other Solve simple geometric problems in 2-D using vector methods Combined questions of vectors and ratio | | | | ## **Year 11 Spring T2- Topic: Iteration, Geometric and Complex Sequences** #### **Prior learning:** Special sequences Fibonacci sequences Recognise geometric sequences | Objectives | | | | | | | | |--|----------------|---|---|--|--|--|--| | End Points | | Foundation | Higher | | | | | | Geometric sequences Iteration Approximate solutions with iteration Quadratic sequences Sequences and algebra | Learning Steps | Generate a geometric progression given a and r Write and use the formula for a geometric progression Find a given term of a geometric progression | Understand the meaning of iteration and use iterative processes Generate a sequence using an iterative rule Solve equations such as x³ + x = 12 using trial and improvement Solve equations using an iteration formula Show a solution lies in an interval using change of signs Find the next term of a quadratic sequence Find the nth term of quadratic sequences Geometric sequences and algebra | | | | | ## Year 11 Spring T2 and Summer T1 - Topic: Trig Graphs and Graph Transformations #### **Prior learning:** Drawing velocity time graphs Exact values of trigonometry | Objectives | | | | | | | |---|----------------|--------------------------------------|---------------------------|--|--|--| | End Points | | Foundation | | Higher | | | | Recap – velocity time graphs Acceleration Distance from velocity time graph Gradient of tangents Area under a curve Drawing and using trigonometric graphs Transformation of graphs | Learning Steps | Recap – drawing velocity time graphs | 0 0 0 0 0 0 0 0 0 0 0 0 0 | Calculate acceleration from a velocity-time graph Calculate the distance travelled from a velocity-time graph Estimate the gradient of a tangent to a curve Find the gradient to a tangent of a curve Find the area under a graph made up of straight lines Find the area under a curve using rectangles Find the area under a curve using trapezia Recognise and draw the graphs of sine and cosine Recognise and draw the graph of tangent Evaluate the sine, cosine and tangent of angles greater than 90° Solve simple trig equations using graphs Transform the graphs of polynomial functions Transform graphs of trigonometric functions Transform a function, f(x) Use completing the square as a transformation of x² to sketch a graph | | |