Year 10 Autumn T1 - Topic: Percentages and Ratio

Prior learning:
Be able to add, subtract, multiply and divide with integers
Recognising factors and common factors
Understand and apply powers
Find a fraction and percentage of an amount

[^0] equations, areas and volumes.

Year 10 Autumn T1 - Topic: Simultaneous Equations and Graphs

Prior learning:

- Use coordinates in all four quadrants, such as plot the points $(3,-2),(-2,1)$ and $(-4,-3)$
- Perform addition, subtraction, multiplication and division calculations involving negatives
- Solve two step equations such as $3 x-1=9$ and $3(x+4)=15$
- Rearrange linear formulae such as $p=3 q+5$
- Substitute positive and negative numbers into a formula such as $P=21+2 w$ Find the HCF of two numbers using appropriate methods

Year 10 Autumn T2 - Topic: Circles

Prior learning:

- Find the perimeter of a shape on squared paper or with all sides given
- Work out the perimeter of a rectangle
- Know and use the formula for the area of a rectangle
- Substitute positive and negative numbers into a formula such as $P=2 I+2 w$
- Substitute numbers into more complicated formulae such as $C=(A+1) D / 9$
- Find fraction of an amount
- Rearrange formulae that include brackets, fractions and square roots
- Round decimals to the nearest decimal place
- Round numbers to a given number of significant figures

Learning sequences							Endpoints
	Grade 3	MW	Grade 4	MW	Grade 5	MW	
Main learning Steps	- Know the definition of a circle and identify the, centre, radius, diameter and circumference - Calculate the circumference of a circle to an appropriate degree of accuracy - Find the perimeter of a semicircle and quarter circle - Calculate the area of a circle to an appropriate degree of accuracy - Find the area of a semicircle or quarter circle - Know the definition of a circle and identify the, centre, radius, diameter and circumference	116 118 118 117 116	- Recognise complex parts of circle such as tangents, arcs, sectors, chords and segments	149	- Find the lengths of arcs and perimeters of sectors of a circle - Find the area of a sector of a circle - Compound shapes with areas - perimeter and area - Find the area of segments of circles	$\begin{aligned} & 167 \\ & 167 \end{aligned}$	- Identify and apply circle definitions and properties - Find the area and circumference of a circle and composite shapes involving circles - Calculate arc lengths, angles and areas of sectors (H)
Assessments O End of Block Test O In class exit tickets and Homework o Mid and End of year tests							

Where will we use these ideas again:	Higher:
All if of these objectives will be revisited when studying 3D shapes - surface areas and	Students will revisit properties of circles when learning about circle theorems and
volumes	equations of circles

Year 10 Autumn T2 - Topic: Handling Data 1

- Use probabilities given to calculate expected values (capture/recapture)
- Product rule for counting
- Use stratified sampling methods

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Learning sequences} \& Endpoints \\
\hline \multirow[b]{2}{*}{Main learning Steps} \& Grade 1-2 \& MW \& Grade 3 \& MW \& Grade 4 \& MW \& \\
\hline \& \begin{tabular}{l}
- Design and use tally charts \\
- Construct and interpret a pictogram \\
- Construct and interpret a bar chart \\
- Group data in equal class intervals \\
- Extract and interpret information presented in simple tables \\
- Find the mode for a set of numbers \\
- Write down the mode from a graph \\
- Find the median for an odd set of numbers \\
- Find the median for an even set of numbers \\
- Calculate the mean for a set of numbers \\
- Solve complex mean problems \\
- Work out the range for a set of numbers \\
- Find the Interquartile range of a set of numbers \\
- Compare the averages and range of two sets of data \\
- Find the total from a frequency table \\
- Design and use a frequency diagram (bar chart for grouped data) \\
- Construct and interpret a composite or dual bar chart \\
- Construct and interpret a vertical line chart \\
- Complete and use two-way tables for discrete and grouped data \\
- Design two-way tables to solve multi-step problems \\
- Construct and interpret a stem-and-leaf diagram
\end{tabular} \& \begin{tabular}{l}
15 \\
16 \\
15 \\
65 \\
\\
\hline 62 \\
62 \\
62 \\
62 \\
62 \\
62 \\
62 \\
\\
62 \\
\\
65 \\
\hline 64 \\
61 \\
61 \\
\hline \(128 b\) \\
\hline 6
\end{tabular} \& \begin{tabular}{l}
- Find the modal value from a discrete frequency table \\
- Find the modal class for grouped data \\
- Find the median and quartiles from a discrete or grouped frequency table \\
- Find the mean from a frequency table \\
- Find an estimate of the mean for grouped data \\
- How to construct and interpret step graphs. \\
- Construct a pie chart \\
- Interpret a pie chart \\
- Draw a scatter graph by plotting points on a graph \\
- Identify the type and strength of correlations \\
- Draw a line of best fit on the scatter graph \\
- Interpret scatter graphs (excluding correlation)
\end{tabular} \& \(130 a\)
\(130 a\)
\(130 a\)
\(130 a\)

$130 b$
129
128
128
129
129
129

129 \& \begin{tabular}{l}
- Complete a time series graph

- Interpret a time series graph using trend lines

- Recognising when and why graphs can be misleading.

Grade 6

- Construct a frequency polygon

 \&

153

153

\hline

 \&

- Construct and interpret frequency tables and two-way tables

- Construct and interpret pictograms, bar-line charts and bar charts

- Interpret and construct pie charts and know their appropriate use.

- Compare distributions using median, mean, mode and range and identify outliers.

- Calculate the inter-quartile range of a data set and use this to compare data sets. (H)

- Interpret and construct tables, graphs and charts for discrete, continuous and grouped data.

- Use median, mean, modal class and range to interpret and compare distributions.

- Use correlation to describe scatter graphs but know that it does not imply causation.

- Draw estimated lines of best fit and make predictions but understand their limitations.

- Interpret and construct line graphs for time series data.
\end{tabular}

\hline \multicolumn{7}{|l|}{| Assessments | O End of Block Test
 O In class exit tickets and Homework
 O Mid and End of year tests |
| :--- | :--- |} \&

\hline
\end{tabular}

Year 10 Autumn T2 - Topic: Probability

Prior learning:

- Know and use correct algebraic conventions (e.g. $4 x x=4 x, m / 2$)
- Understand and use the vocabulary of probability
- Understand and use a probability scale
- Add decimals
- Subtract decimals
- Add and subtract vulgar (non-mixed) fractions with the same denominator
- Add and subtract vulgar (non-mixed) fractions with different denominators
- Identify and find equivalent fractions
- Represent fractions, decimals and Percentages on a number line

Learning sequences							Endpoints
	Grade 2	MW	Grade 3	MW	Grade 7+	MW	
	- Express a probability as a fraction, decimal or percentage - Use the fact that the probabilities of mutually exclusive outcomes add up to 1 and complete a probability table - Use the fact that the probabilities of mutually exclusive outcomes add up to calculate other probabilities (the OR rule) - Solve equations from probability problems - List outcomes systematically - Use a sample space or a list to find probability of two events happening - Use a two-way table to find a probability - Design and use frequency trees	59 60 60 58 59 61 57	- Write all the combinations from a list - Identify permutations from a list - Draw a sample space - Understand and use relative frequency / experimental probability - Use probability to estimate outcomes for a population Grade 4 - Complete a probability tree diagram involving independent events	$\begin{gathered} \hline 69 \\ 69 \\ 126 \\ 125 \\ 125 \\ \\ \hline \end{gathered}$	- Find probabilities of successive independent events without a tree diagram - Find the probability of a combination of mutually exclusive events from a tree diagram (the OR rule) - Form and solve equations from probability tables, frequency trees - More complex problems with frequency trees and two way tables	204	- Use experimental data to estimate probabilities and expected frequencies - Use tables to represent the outcomes of probability experiments - Calculate theoretical probabilities and expected frequencies using the idea of equally likely events. - Recognise mutually exclusive events and exhaustive events and know that the probabilities of mutually exclusive exhaustive events sum to 1. - Compare theoretical probabilities with experimental probabilities. - Introduction to tree diagrams
Assessments O End of Block Test O In class exit tickets and Homework O Mid and End of year tests							

Year 10 Spring T1 - Topic: Linear Sequences \& Graphs

Prior learning:

- Understand the terms 'perpendicular lines' and parallel lines'
- Use coordinates in the first quadrant, such as plot the point $(3,2)$
- Use coordinates in all four quadrants, such as plot the points $(3,-2),(-2,1)$ and $(-4,-3)$
- Add, subtract, multiply and divide integers
- Find multiples of a number
- Substitute positive and negative numbers into a formula such as $P=2 I+2 w$
- Recognise and describe arithmetic and geometric sequences
- Generate a sequence of numbers or diagrams from a term-to-term rule
- Write the term-to-term rule of a simple sequence

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Learning sequences} \& Endpoints \\
\hline \& Grade 3 \& MW \& Grade 4-5 \& MW \& Grade 8 \& MW \& \\
\hline \& \begin{tabular}{l}
- Find coordinates of points determined by geometrical information \\
- Understand the equation of a straight line, interpreting the gradient and intercept \\
- Using ratio to find the gradient base:height \\
- Find the gradient of a straight-line graph \\
- Find the gradient of a line given two coordinates \\
- Find the nth term of a sequence or a series of diagrams \\
- Generate a sequence of a series of diagrams given the nth term \\
- Find a particular term in a sequence \\
- Justify whether a number is a term of a sequence
\end{tabular} \& 113
3
3
3
3
103
102
103 \& \begin{tabular}{l}
- Find midpoints of two coordinates (2D and 3D) \\
- Sketch a linear function from its equation \\
- Find the equation of a straight line from a graph \\
- Find the equation of a straight line given two coordinates \\
- Find the equation of a straight line given a parallel line and a point \\
- Interpret a straight line graph in a real life context \\
- Interpret the gradient of a graph in the context of a question \\
- Interpret the intercept of a graph in the context of a question \\
- Draw and interpret distance-time graphs \\
- Work out an average speed from a distance-time graph
\end{tabular} \& 133
\(159 a\)
\(159 b\)
\(159 b\)

143

143 \& | - Introduce $f(x)$ notation |
| :--- |
| - Find the gradients of perpendicular straight-line graphs |
| - Prove two lines are parallel or perpendicular |
| - Find the equation of a straight line given a perpendicular line and a point | \& 208

208 \& | - Find terms of a linear sequence using term-to-term or position-toterm rule. |
| :--- |
| - Work with coordinates in all four quadrants |
| - Identify gradients and intercepts of straight line graphically and algebraically |
| - Use the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ to identify parallel lines |
| - Use the form $y=m x+c$ to identify perpendicular lines (H) |
| - Find the equation of a straight line give coordinates |
| - Identify the gradient of a straight line graph as a rate of change. |
| - Use graphs to solve problems involving distance, speed and acceleration. |

\hline \multicolumn{7}{|l|}{| Assessments | O End of Block Test
 o In class exit tickets and Homework
 o Mid and End of year tests |
| :--- | :--- |} \&

\hline
\end{tabular}

Year 10 Spring T2 - Topic: Trigonometry

Prior learning:

- Rearrange linear formulae such as $p=3 q+5$
- Substitute positive and negative numbers into a formula such as $P=2 l+2 w$
- Convert between fractions, decimals and percentages

Learning sequences					Endpoints
	Grade 5	MW	Grade 7+	MW	
	- Label the vertices and sides of a triangle - Understand that sine, cosine and tangent are ratios - Know the exact trigonometric values for $\left(30^{\circ}\right.$, $45^{\circ}, 60^{\circ}, 90^{\circ}$) - Use trigonometry to find missing side lengths in right angled triangles - Use trigonometry to find missing angles in right angled triangles - Use trigonometry to calculate angles of elevation	$\begin{aligned} & 173 \\ & 168 \\ & 168 \end{aligned}$	-3D Trigonometry - Pythagoras and Trigonometry	218	- Use trigonometric ratios to find missing lengths and angles in triangles - Find the exact values of $\sin \theta, \cos \theta$ and $\tan \theta$ for key angles.
Assessments O End of Block Test O In class exit tickets and Homework O Mid and End of year tests					

Where will we use these ideas again:

This is often linked to areas and perimeters of shapes

- Solve one step equations such as $3 x=12$ or $\mathrm{x}+$ $5=9$
- Solve two step equations such as $3 x-1=9$ and $3(x+4)=15$ Understand the terms
- Use the fact that the angles of a triangle add up to 1800 to find angles
- Use Pythagoras' theorem to find missing sides

Endpoints

- Use trigonometric ratios to find missing lengths and angles in triangles
- Find the exact values of $\sin \theta, \cos \theta$ and $\tan \theta$ for key angles.
- Use trigonometry to find missing side lengths in right angled triangles right angled triangles
- Use trigonometry to calculate angles of - End of Block Test O In class exit tickets and Homework
o Mid and End of year tests

Higher:

Will be revisiting trigonometry when looking at cosine and sine rules. These topics will also be linked to bearings, linear and circle graphs, circle theorems

Year 10 Spring T2 - Topic: Transformations

Prior learning:

Be able to add, subtract, multiply and divide with negative integers

Learning sequences							Endpoints
Main learning Steps	Grade 1	MW	Grade 2	MW	Grade 4	MW	
	- Recognise when a shape is symmetrical - Draw all the lines of symmetry on a 2-D shape - Draw the reflection of a shape in a mirror line - Identify reflection symmetry in 3-D solids - Draw the plane of symmetry in a 3-D solid Give the order of rotational symmetry of a 2-D shape - Complete a shape so that it is rotationally symmetrical	11 MW 50 50	- Reflect shapes in the axes of a graph - Reflect shapes in the lines parallel to the axes such as $x=2$ and $y=-1$ - Reflect shapes in lines such as $y=x$ and $y=-x$ - Describe fully reflections in a horizontal or vertical line - Describe fully reflections in diagonal lines - Rotate shapes by 90° and 180° - Rotate shapes about the origin - Rotate shapes about any point - Describe fully rotations about any point Grade 3 - Describe a single transformation using correct mathematical language	$\begin{array}{\|l\|} \hline 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 49 \\ 49 \\ 49 \\ \hline \end{array}$	- Draw the enlargement of a shape by a positive scale factor - Find the scale factor of an enlarged shape - Enlarge a shape by a positive scale factor from a given centre - Enlarge a shape by a fractional scale factor from a given centre - Find the centre of enlargement given a shape and its image - Describe fully an enlargement from a given point Grade 6 - Enlarge a shape by a negative scale factor from a given centre - Draw a sequence of transformations - Describe a series of transformations as one single transformation Grade 7 - Describe points which are invariant	$\begin{aligned} & \hline 144 \\ & 144 \\ & 148 \\ & 148 \\ & \\ & 148 \\ & \hline \text { MW } \\ & \hline 181 \\ & 182 \\ & 182 \\ & \hline \text { MW } \end{aligned}$	- Describe and transform shapes using reflections, rotations, translations, and enlargements - Enlargements with fractional and negative scale factors (H) - Identify what changes and what is invariant under a combination of transformations. (H)
Assessments O End of Block Test O In class exit tickets and Homework O Mid and End of year tests							

[^1]
Year 10 Summer T1 - Units and Proportionality

Prior learning:

- Solve questions involving best value for money
- Solve simple direct proportion (e.g. given the cost of 5 items, find the cost of 3)
- Be familiar with the unitary method
- Understand and use compound measures (SDT, DMV, FPA etc) in simple questions
- Understand and use compound measures (SDT, DMV, FPA) in more complex questions involving more than one part
- Know the conversions for metric units and money
- Decide which metric to use for everyday measurements

Learning sequences							Endpoints
	Grade 3	MW	Grades 4 \& 5	MW	Grade 7+	MW	
sdəłs s̊u!uлеәן u!̣еw	- Solve proportion problems involving exchanging money - Draw and/or use conversion graphs, including for temperature and currency conversion - Convert between imperial and metric units such as cm to inches, kg to lbs, litres to pints given the conversions	$\begin{aligned} & 105 \\ & 107 \end{aligned}$	- Convert between different units of compound measures - Solve indirect proportion questions involving work rate (e.g. how many man-hours) - Recognise graphs showing direct and inverse proportion	199	- Understand and solve simple problems involving direct proportion ($y \alpha x$) - Understand and solve simple problems involving indirect proportion (y $\alpha 1 / x$) - Recognise the graphs showing direct and inverse proportion - Understand and solve more complex problems involving direct and indirect proportion ($\mathrm{y} \alpha \mathrm{x}^{2}$)	199 199 199 199	- Solve direct and inverse proportion problems. - Describe direct and inverse proportion relationships using an equation. - Recognise graphs showing direct and inverse proportion
Assessments O End of Block Test O In class exit tickets and Homework O Mid and End of year tests							

Year 10 Summer T1 - Working in 3D

Prior learning:

- Know and use the formula for the area of a rectangle
- Know and use the formula for the area of a triangle
- Know and use the formula for the area of a parallelogram
- Know and use the formula for the area of a trapezium
- Find the area of compound shapes
- Calculate the circumference of a circle to an appropriate degree of accuracy
- Find the perimeter of a semicircle and quarter circle
- Calculate the area of a circle to an appropriate degree of accuracy
- Find the area of a semicircle or quarter circle

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Learning sequences} \& Endpoints \\
\hline \multirow[b]{2}{*}{} \& Grade 1 \& 2 \& MW \& Grade 3 \& MW \& Grade 5 \& MW \& \\
\hline \& \begin{tabular}{l}
- Draw a cuboid on an isometric grid and mark its dimensions \\
- Draw 3-D shapes on isometric paper \\
- Name and state properties of 3D shapes, such as vertices, edges and faces \\
- Identify basic 3-D solids \\
- Sketch 3-D solids \\
- Find the volume of a solid by counting cubes and stating units \\
- Recognise nets of familiar 3-D shapes, e.g. Cube, cuboid, triangular prism, square based pyramid \\
- Draw the net of a cuboid \\
- Draw and interpret plans and elevations of 3-D solids \\
- Construct and recognise the nets of 3-D solids such as pyramids and triangular prisms \\
- Draw a 3-D solid given its plan and elevations
\end{tabular} \& 43
43
43

44

44
51

44

51 \& | - Find the volume of a cube/cuboid |
| :--- |
| - Find the height of a cuboid, given volume, length and breadth |
| - Calculate volumes of prisms |
| - Convert between square and cubic metric units (mm 2 to m 2 or cm^{3} to litres) |
| - Calculate volumes of cylinders |
| - Solve boxing problems involving volume calculations |
| - Calculate the surface area of a cuboid |
| - Calculate the surface areas of cylinders |
| - Calculate the surface areas of a triangular prism |
| Grade 6 |
| - Find the surface area and volume of composite solids | \& 115

115
119
112

112

$114 a$ \& | - Calculate the surface area of more complex prisms |
| :--- |
| - Find the surface area of spheres |
| - Find the surface area of cones |
| - Find the surface area of a pyramid |
| - Find the volumes of spheres |
| - Find the volume of a pyramid |
| - Find the volume of cones |
| - Solve algebraic problems involving the surface area/volume of complex shapes |
| - Find the volume of a frustum |
| Grade 7 |
| - Compare the surface area and volume of solid shapes, using ratios where appropriate |
| - Form and solve equations related to 3D shapes | \& 169

171

169
170
171
$169-$
171

172 \& | - Identify the number of faces, edges and vertices of 3D shapes |
| :--- |
| - Construct and interpret plans and elevations of 3D shapes. |
| - Calculate the volume of cuboids, cylinders and other prisms. |
| - Apply the formulae for volume and surface area of spheres, pyramids, cones and composite solids. |
| - Know and apply the relationship between lengths, areas and volumes of similar shapes (H) |
| Curved surface area of a cone $=\pi r l$ |
| Surface area of a sphere $=4 \pi r^{2}$ |
| Volume of a sphere $=\frac{4}{3} \pi r^{3}$ |
| Volume of a cone $=\frac{1}{3} \pi r^{2} h$ |

\hline \multicolumn{7}{|l|}{| Assessments | 0 End of Block Test
 o In class exit tickets and Homework
 o Mid and End of year tests |
| :--- | :--- |} \&

\hline
\end{tabular}

Year 10 Summer T1 (Higher only) - Circle Theorems

Prior learning:

- Draw diagrams from written descriptions
- Estimate angles and measure them accurately
- Draw angles accurately
- Construct a circle using a pair of compasses, given a centre and a point on the circumference
- Understand the term equidistant
- Understand and use the perpendicular distance from a point to a line as the shortest distance to the line
- Know the definition of a circle and identify the, centre, radius, diameter and circumference
- Recognise complex parts of circle such as tangents, arcs, sectors, chords and segments
- Use the fact that the angles of a triangle add up to 180ㅇ to find angles
- Use angles in a quadrilateral add up to 360

Learning sequences					Endpoints
	Grade 6	MW	Grade 7+	MW	
sdәłs 8и!идеәן и!е	- Use and apply the six circle theorems - Prove that the angle at the centre is twice the angle at the circumference - Prove that angles in semi-circle are equal to 90° - Prove the same segment theorem - Prove the alternate segment theorem - Recognising the similar triangles formed when two chords intersect	$\begin{aligned} & \hline 183 \\ & 184 \\ & 184 \\ & \\ & 184 \\ & 184 \end{aligned}$	- Use the intersecting chords theorem to find length - Secant Theorem - Opposite angles of a cyclic quadrilateral add to 180° - Pythagoras' Theorem with circle theorems	183	- Prove and apply circle theorems (H)
Assessments O End of Block Test O In class exit tickets and Homework 0					

Where will we use these ideas again:
Circle theorems are often included in questions involving circle graphs

Year 10 Summer T1 (Foundation) - Angles Review, Construction, Congruence, Similarity and Loci

Prior learning:

- Understand the word congruent and identify congruent shapes
- Draw diagrams from written descriptions
- Measure a line accurately to the nearest millimetre
- Construct simple shapes on squared paper
- Estimate angles and measure them accurately
- Draw angles accurately
- Construct a circle using a pair of compasses, given a centre and a point on the circumference
- Understand the term equidistant
- Understand and use the perpendicular distance from a point to a line as the shortest distance to the line

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Learning sequences} \& Endpoints \\
\hline \multirow{8}{*}{} \& Grade 2 \& MW \& Grade 4 \& MW \& \\
\hline \& \begin{tabular}{l}
- Draw an SAS triangle with ruler and protractor \\
- Draw an ASA triangle with ruler and protractor
\end{tabular} \& 47
47 \& \multirow[t]{5}{*}{\begin{tabular}{l}
- Find the lengths in similar shapes \\
- Understand the word "similar" and be able to identify similar shapes \\
- Understand the word "congruent" and be able to identify congruent shapes \\
- Understand and apply mathematical similarity \\
- Draw an SSS triangle with ruler and compasses \\
- Draw a quadrilateral such as a kite or a parallelogram with given measurements with ruler and protractor \\
- Use angle facts to prove triangles are congruent in more complex questions (e.g. bow tie question) \\
- Construct the perpendicular bisector of a line \\
- Construct the angle bisector \\
- Construct the perpendiculars to and from a point \\
- Construct the angles of 600 and 900 with a ruler and compass
\end{tabular}} \& 144 \& \multirow[t]{7}{*}{\begin{tabular}{l}
- Measure line segments and angles accurately \\
- Describe and apply the properties of angles at a point, on a line and at intersecting and parallel lines. \\
- Derive and use the sum of angles in a triangle \\
- Derive and apply the properties and definitions of special types of triangles and quadrilaterals \\
- Identify and use congruence and similarity \\
- Deduce and use the angle sum in any polygon \\
- Calculate interior and exterior angles for regular polygons \\
- Construct triangles \\
- Use the standard ruler and compass constructions \\
- Solve loci problems
\end{tabular}} \\
\hline \& Review Topics \& MW \& \& \& \\
\hline \& \multirow[t]{5}{*}{\begin{tabular}{l}
- Recognise corresponding, alternate and co-interior angles \\
- Recognise vertically opposite angles and know that they are equal \\
- Understand why some shapes tessellate and others do not \\
- Use the fact that the angles of a triangle add up to 1800 to find angles \\
- Use angle properties of isosceles, equilateral and rightangled triangles \\
- Calculate interior and exterior angles of a quadrilateral \\
- Calculate the sum of angles in any polygon \\
- Calculate exterior and interior angles of a regular polygon \\
- Prove that the angles of a triangle add up to 1800 and use this to find angles \\
- Prove the exterior angle of a triangle is equal to the sum of the two interior angle \\
- Prove that the angles in a quadrilateral add up to \(360^{\circ}\)
\end{tabular}} \& 120 \& \& 144
147 \& \\
\hline \& \& 12a \& \& 166 \& \\
\hline \& \& 122

122
123
123 \& \& $146 a$
145
146 b

145 \&

\hline \& \& 121 \& Grade 5 \& MW \&

\hline \& \& 123

123 \& | - Given two triangles are congruent, state the reason (SAS, ASA, SSS, RHS) |
| :--- |
| - Prove that two triangles are congruent | \& 166

166 \&

\hline \multicolumn{5}{|l|}{| Assessments | O End of Block Test
 0
 O In class exit tickets and Homework
 O Mid and End of year tests |
| :--- | :--- |} \&

\hline
\end{tabular}

Year 10 Summer T2 - Bearings and Scale Drawings

Prior learning:

- Estimate angles and measure them accurately
- Draw angles accurately
- Recognise corresponding, alternate and co-interior angles
- To be able to convert between metric units such as m to cm, kg to g , litres to ml
- Be familiar with the unitary method
- Calculate parts of a ratio given one quantity

Learning sequences							Endpoints
	Grade 2	MW	Grade 3	MW	Grade 7+	MW	
Main learning Steps	- Estimate angles and measure them accurately - Draw angles accurately - Be familiar with the unitary method	$\begin{gathered} \hline 46 a \\ 46 \mathrm{~b} \\ 42 \end{gathered}$	- Recognise corresponding, alternate and co-interior angles - To be able to convert between metric units such as m to cm , kg to g , litres to ml - Calculate parts of a ratio given one quantity - Know the three rules of bearings - Find the bearing between two points - Draw a point on a fixed bearing from another point - Given a bearing, find the reverse bearing - Use and interpret map scales - Draw and interpret scaled diagrams in real-life contexts	120 112 106 124 124 124 124 124	- Bearings with Pythagoras and Trigonometry		- Use scale factors, scale diagrams and maps. - Measure line segments and angles accurately - Interpret maps and scale drawings - Use bearings - Use bearings to specify directions (H)
Assessments 0 End of Block Test O In class exit tickets and Homework o Mid and End of year tests							

Where will we use these ideas again:

Bearings will be revisited again with trigonometry and angles in parallel lines
Scale drawings as a concept is revisited within enlargement

Year 11 2024-25 - Work in Progress

End points

Construct histograms (H)

Sequences

Prior learning

- Understand the terms 'perpendicular lines' and 'parallel lines'
- Use coordinates in the first quadrant, such as plot the point $(3,2)$
- Use coordinates in all four quadrants, such as plot the points ($3,-2$), ($-2,1$) and ($-4,-3$)
- Add, subtract, multiply and divide integers
- Find multiples of a number
- Substitute positive and negative numbers into a formula such as $\mathrm{P}=21+$ 2w
- Recognise and describe arithmetic and geometric sequences
- Generate a sequence of numbers or diagrams from a term-to-term rule
- Write the term-to-term rule of a simple sequence

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Learning sequences} \& Endpoints \\
\hline \multirow{4}{*}{} \& Grade 2 \& MW \& \multirow[t]{4}{*}{\begin{tabular}{l}
Grade 4- 5 \\
- Recognise the Fibonacci sequence \\
- Solve problems involving the Fibonacci sequence \\
- Recognise a geometric progression and identify the common ratio \\
- Generate a geometric progression given a and \(r\) \\
- Write and use the formula for a geometric progression \\
- Find a given term of a geometric progression
\end{tabular}} \& MW \& Grade 6 \& MW \& \\
\hline \& \begin{tabular}{l}
- Recognise and describe arithmetic and geometric sequences \\
- Generate a sequence of numbers or diagrams from a term-to-term rule \\
- Write the term-to-term rule of a simple sequence
\end{tabular} \& 37
37
37 \& \& 141
141
163
163 \& \begin{tabular}{l}
- Generate a sequence using an iterative rule \\
- Solve equations such as \(x^{3}+x\) = 12 using trial and improvement \\
- Generate a sequence using an iterative rule
\end{tabular} \& 180
179
180 \& \begin{tabular}{l}
- Find terms of a linear sequence using term-to-term or position-toterm rule. \\
- Recognise special types of sequences and find terms using either term-to-term or position-
\end{tabular} \\
\hline \& Grade 3 \& MW \& \& 163 \& Grade 7+ \& MW \& - Find terms of a quadratic \\
\hline \& \begin{tabular}{l}
- Find the nth term of a sequence or a series of diagrams \\
- Generate a sequence of a series of diagrams given the nth term \\
- Find a particular term in a sequence \\
- Justify whether a number is a term of a sequence
\end{tabular} \& 103
102
103

104 \& \& 163 \& | - Find the nth term of quadratic sequences |
| :--- |
| - Find the next term of a quadratic sequence |
| - Understand the meaning of iteration and use iterative processes |
| - Solve equations using an iteration formula | \& 213

213

180

180 \& | position-to-term rule. |
| :--- |
| - Solve linear inequalities and represent the solution on a number line |

\hline
\end{tabular}

$\left.\begin{array}{|l|l|l|l|l|l|}\hline & \begin{array}{l}\bullet \text { Recognise special sequences such } \\ \text { (e.g. 2n, square numbers, cube } \\ \text { numbers) }\end{array} \\ \text { Assessments } & \begin{array}{l}\text { O End of Block Test } \\ \text { O In class exit tickets and Homework } \\ \text { O Mid and End of year tests }\end{array} & \begin{array}{l}\bullet \begin{array}{l}\text { Solve equations using the } \\ \text { interval bisection method }- \\ \text { iterations } \\ \text { Show a solution lies in an } \\ \text { interval using change of } \\ \text { signs }\end{array}\end{array} & 180\end{array}\right\}$

[^0]: Where will we use these ideas again:
 This topic will be revisited again throughout the course as fractions, ratio and percentages will be incorporated into all other topics such as probability, solving

 Higher: Fractions, ratio and percentages will be incorporated into all other topics such as probability, solving equations, areas and volumes.

[^1]: Where will we use these ideas again:
 Introducing vector notation in translation will lead to the unit on vectors
 Higher: the understanding of transformations will be revisited when transforming

 Then concept of enlargement and scale factors links to previous topics of scales and to future topics of similar shapes

